Inferensialadalah ilmu pengetahuan statistik yang bertugas mempelajari tata cara penarikan kesimpulan mengenai keseluruhan populasi berdasarkan data hasil penelitian pada sampael (bagian dari populasi).[3] Teknik analisis data inferensial dilakukan dengan statistika inferensial, yaitu statistika yang digunakan untuk menganalisis data dengan GameplayMahjong Ways 2 slot pgsoft gacor adalah pemain tidak akan menemukan fitur Free Spin dan sebagai ganti ada fitur mini games yang akan memberikan hadiah menarik. Fitur bonus dari Dragon Legend adalah Wild dan Scatter. RTP Dragon Legend adalah 97.15%. Koefisienvariasi dari sekelompok data adalah 4%. 4%.Jika rata -rata dari sekelompok data tersebut adalah 64 maka nilai simpangan baku nya adalah. Di dalam lingkaran yang berdiameter 20cm terdapat sebuah juring dengan besar sudutpusat 450. UkuranDispersi/Persebaran (Dispersion measurement): Jarak (Range) Ragam/Varian (Variance) Simpangan Baku (Standard deviation) Rata-rata deviasi (Mean deviation) Almuntofa Purwantoro, ST., MT. 4. Ukuran Dispersi Penyebaran adalah perserakan data individual terhadap nilai rata-rata. Data homogen (tidak bervariasi) memiliki penyebaran (dispersi Langkahkerja : 1. Hitung simpangan baku : dari hasil perhitungan menghasilkan : Sd populasi = 10, 35497948 Sd sampel = 10, 56850667 2. Hitung rata-rata : dari hasil perhitungan menghasilkan : 67, 88 3. Hitung koefisien variasi : KV populasi = 10, 35497948 =0, 152548312 67, 88 KV sample = 10, 56850667 = 0, 155693969 67, 88 KoefisienVariasi (KV) Koefisien variasi adalah nilai yang menyatakan persentase simpangan baku dari rata-ratanya. KV digunakan untuk melihat merata atau tidaknya suatu nilai data (keseragaman). Contoh: Tentukan koefisien variasi (KV) dari data berikut : Data f 75 - 79 2 80 - 84 3 85 - 89 7 90 - 94 13 95 - 99 10 100 - 104 4 105 . Unduh PDF Unduh PDF Varians adalah ukuran seberapa tersebarnya data. Varians yang rendah menandakan data yang berkelompok dekat satu sama lain. Varians yang tinggi menandakan data yang lebih tersebar. Konsep ini memiliki banyak kegunaan di dalam statistik. Misalnya, membandingkan varians dari dua kelompok data seperti hasil dari pasien laki-laki dan perempuan adalah salah satu cara untuk menguji apakah sebuah variabel memiliki efek yang dapat diamati.[1] Varians juga berguna saat membuat model statistik, karena varians yang rendah menandakan data yang over-fitting.[2] 1 Dapatkan data sampel. Dalam banyak kasus, ahli statistik hanya mendapatkan data sampel, atau sebagian dari populasi yang sedang mereka teliti. Misalnya, alih-alih menganalisis populasi "harga setiap mobil di Jerman", seorang ahli statistik dapat mencari harga dari sampel acak beberapa ribu mobil. Ia dapat menggunakan sampel ini untuk mendapatkan estimasi harga mobil di Jerman, namun hasilnya mungkin tidak sama dengan hasil sebenarnya. Contoh Untuk menganalisis jumlah kue muffin yang terjual setiap hari di sebuah kafetaria, Anda mengumpulkan data dari enam hari acak dan memperoleh hasil sebagai berikut 17, 15, 23, 7, 9, 13. Data ini adalah sebuah sampel, bukan data populasi, karena Anda tidak mempunyai data penjualan setiap hari sejak kafetaria itu dibuka. Jika Anda memiliki "semua" data dari sebuah populasi, langsung lompat ke metode berikutnya. 2 Tuliskan rumus varians sampel. Varians dari sejumlah data menunjukkan seberapa tersebarnya data. Semakin varians mendekati nol, semakin data berkelompok. Ketika menggunakan data sampel, gunakan rumus berikut untuk menghitung varians[3] 3 Hitung mean dari sampel. Simbol x̅ menandakan mean dari sebuah sampel.[4] Hitung sebagaimana Anda menghitung mean jumlahkan semua data, lalu membaginya dengan jumlah data. Contoh Mula-mula, jumlahkan semua data 17 + 15 + 23 + 7 + 9 + 13 = 84Lalu, bagi jawabannya dengan jumlah data, dalam contoh ini dengan enam 84 ÷ 6 = sampel = x̅ = 14. Anda dapat menganggap mean sebagai "titik tengah" dari data. Jika data berkumpul di sekitar mean, variansnya rendah. Jika data tersebar jauh dari mean, variansnya tinggi. 4 Kurangkan nilai setiap data dengan mean. Sekarang kita menghitung - x̅, di mana adalah nilai dari tiap data. Setiap hasil menggambarkan deviasi data dari mean, atau dalam bahasa sederhana, seberapa jauh data dari mean.[5] . 5 Kuadratkan hasilnya. Seperti yang telah dijelaskan sebelumnya, jumlah dari seluruh nilai deviasi - x̅ akan sama dengan nol. Ini artinya "rata-rata deviasi" akan selalu sama dengan nol, dan hal ini tidak memberikan informasi apa-apa tentang sebaran data. Untuk menyelesaikan masalah ini, kita mengkuadratkan nilai setiap deviasi. Ini akan membuat angkanya menjadi positif semua, sehingga nilai negatif dan positif tidak saling menghilangkan.[6] 6 7 Bagi dengan n - 1, di mana n adalah jumlah data. Dulu, para ahli statistik hanya membagi dengan n ketika menghitung varians sampel. Dengan demikian kita mendapat nilai rata-rata dari deviasi kuadrat, yang cocok untuk menghitung varians sampel tersebut. Tetapi ingatlah, sebuah sampel hanyalah estimasi dari populasi yang lebih besar. Jika kita mengambil sampel lain secara acak dan melakukan perhitungan, hasilnya akan berbeda. Tampaknya, membagi dengan n - 1 ketimbang n memberi perkiraan nilai varians yang lebih baik untuk populasi, yang sebetulnya ingin kita ketahui. Koreksi ini sudah menjadi begitu umum sehingga sekarang diterima sebagai definisi dari varians.[7] Contoh Ada enam data di dalam contoh ini, jadi n = sampel adalah = 8 Pahami varians dan standar deviasi. Ingatlah bahwa di dalam rumus ini ada pengkuadratan, varians diukur dalam unit kuadrat dari data asli. Hal ini membuat kita sulit untuk memahami data secara intuitif. Oleh karena itu ada baiknya kita menggunakan standar deviasi. Anda tidak perlu repot-repot, karena standar deviasi didefinisikan sebagai akar kuadrat dari varians. Oleh karena itu varians sampel dituliskan dengan , dan standar deviasi sampel dengan . Misalnya, standar deviasi sampel dari contoh di atas adalah = s = √ = Iklan 1 Mulailah dengan sejumlah data populasi. Istilah "populasi" mengacu pada semua pengamatan yang relevan. Misalnya, jika kita ingin meneliti tentang usia penduduk Texas, populasi yang kita gunakan adalah usia setiap orang yang tinggal di Texas. Kita mungkin butuh membuat lembar kerja spreadsheet untuk data sebesar itu, tetapi mari kita gunakan data yang lebih kecil sebagai contoh 2 Tuliskan rumus varians populasi. Karena populasi memiliki semua data yang kita perlukan, rumus ini bisa kita gunakan untuk menghitung secara tepat varians populasi. Untuk membedakannya dengan varians sampel yang hanya estimasi, ahli statistik menggunakan variabel yang berbeda[8] 3 Cari mean populasi. Ketika menganalisis sebuah populasi, simbol μ "mu" melambangkan rata-rata aritmetik. Untuk mencari mean, jumlahkan semua data, lalu bagi dengan jumlah data. Anda mungkin mengira bahwa mean sama dengan "rata-rata". Berhati-hatilah sebab kata itu memiliki banyak definisi dalam matematika. Contoh mean = μ = = 4 Kurangkan setiap data dengan mean. Data yang lebih dekat dengan mean akan menghasilkan selisih yang lebih dekat dengan nol. Ulangi pengurangan untuk setiap data, dan Anda dapat mulai mengamati seberapa tersebarnya data. 5 Kuadratkan setiap hasil. Sekarang kita bisa melihat bahwa beberapa angka negatif dihasilkan dari proses sebelumnya, dan beberapa yang lain positif. Jika Anda membayangkan data-data tersebut pada sebuah garis bilangan, kedua kategori ini mewakili data yang berada di sebelah kiri dan sebelah kanan mean. Hal ini tidak berguna dalam menghitung varians, karena kedua kelompok ini akan saling menghilangkan. Kuadratkanlah setiap angka supaya mereka menjadi positif. 6 Cari mean dari hasil. Sekarang Anda telah memperoleh sebuah nilai untuk setiap data, yang berhubungan secara tidak langsung dengan jarak data tersebut dari mean. Cari mean dari hasil ini dengan menjumlahkan mereka semuanya, lalu dibagi dengan jumlah angka. ContohVarians dari populasi = 7 Hubungan dengan rumus semula. Jika Anda ragu apakah perhitungan ini sama dengan rumus yang diberikan di awal, coba tuliskan seluruh perhitungan secara panjang Iklan Karena kita sulit untuk menginterpretasi nilai varians, nilai ini biasanya dipakai sebagai dasar untuk menghitung standar deviasi. Penggunaan "n-1" ketimbang "n" dalam penyebut ketika menganalisis sampel adalah sebuah teknik yang dikenal dengan koreksi Bessel. Sampel hanyalah sebuah perkiraan dari seluruh populasi, dan mean dari sampel mengalami bias dalam estimasi. Koreksi ini menghilangkan bias tersebut.[9] Hal ini terjadi karena begitu Anda memilih n - 1 data, data n terakhir sudah tertentu, karena hanya nilai tertentu yang dapat menghasilkan mean dari sampel x̅ yang digunakan dalam rumus varians.[10] Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? MatematikaSTATISTIKA Kelas 12 SMAStatistika WajibRagamRagamStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0148Diketahui data 2,6,7,1,4. Varians data tersebut adalah .... 0314Hasil ulangan matematika sekelompok siswa disajikan pada ...0148Ragam dari data 30, 40, 60, 70, 50 adalah ...0243Tentukan simpangan rata-rata dan simpangan baku data beri...Teks videoDisini kita memiliki soal yang berkaitan dengan statistika yang ditanyakan adalah koefisien variasi dan rumusnya ini adalah koefisien variasinya dinotasikan sebagai kafe ini akan sama dengan f x per X bar mah esnya itu adalah simpangan baku dan X bar nya adalah rata-rata dari data nya kemudian ini akan dikalikan dengan 100% kemudian disini tentunya kita membutuhkan informasi simpangan baku dan juga rata-ratanya. Nah pertama-tama disini kita akan mencari rata-rata nya atau dinotasikan sebagai f x bar ini akan sama dengan jumlah semua datanya Ini dibagi dengan ada berapa banyak datanya di sini Jumlah semua datanya berarti kita tinggal jumlahkan saja semuanya berarti 6 + 7 + 8 + 6 + 9 + 8 + 9 + 9 + 10 kemudian dibagi dengan ada berapa banyak data nah di situ ada 9 data berarti dibagi 9Jika dihitung ini akan menjadi 72 per 9 berarti rata-ratanya itu adalah 8 untuk mencari es yaitu simpangan baku ini rumusnya itu adalah akar dari Sigma I = 1 sampai n x min x bar kuadrat per m Nah itu adalah Jumlah Berapa banyak datanya Nah di sini kan tadi sudah kita hitung bawa nggak tanya itu ada 9 berarti airnya itu adalah 9 Kemudian untuk aksinya itu berarti X1 X2 dan seterusnya. Nah ini kita lihat dari datanya berarti 6 ini x 17 x 28 x 3 dan seterusnya dengan demikian di sini kita akan mendapatkan rumus atau persamaan simpangan baku yaitu adalah di sini 6 - 8 karena kan x 1 dikurangi dengan rata-ratanya yaitu 8 ini di kuadrat Kemudian ditambahkan dengan 7 milikuadrat ditambah 8 Min 8 kuadrat + 68 kuadrat + 9 Min 8 kuadrat + 8 Min 8 kuadrat ditambah 9 Min 8 kuadrat ditambah 9 Min 8 kuadrat + 10 Min 8 kuadrat lalu ini semua akan dibagi dengan n ingat ini adalah 9 dan ini di akar jika kita jumlahkan di sini kita akan mendapatkan akar dari total yang atas itu adalah 16 per 9 Nah ini jika diakarkan berarti jadi akar 16 per Akar 9 hasilnya adalah 4 per 3 dengan demikian disini kita bisa mendapatkan koefisien variasinya atau Cafe ini = X per X bar s-nya itu adalah 4 per 3 per X bar nyata rata-ratanya itu adalah 8Ini jika kita hitung hasilnya adalah 1/6 atau misalnya jika kita ingin hasilnya itu dalam persen berarti cafenya atau koefisien variasinya itu adalah 1 per 6 dikali 100% Ini hasilnya itu adalah 53% dengan demikian jawabannya itu tidak ada di pilihannya sampai jumpa di pertanyaan berikutnya. Discover the world's research25+ million members160+ million publication billion citationsJoin for free Persentase Statistika Pendidikan Matematika Ukuran VariasiDi presentasikan pada kuliah Statistika Pendidikan Matematika Program Pascasarjana Universitas Negeri Medan Prodi Pendidikan MatematikaOleh Rizki Kurniawan Rangkuti Ukuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil PkUkuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil Pk Ukuran VariasiUkuran pemusatan dapat digunakan untuk menampilkan ringkasan data dalam suatu nilai tunggal yang menunjukkan rata-rata distribusi. Sekumpulan data mempunyai unsur-unsur yang nilainya bervariasi dan dua distribusi data atau lebih mungkin memiliki nilai pusat yang sama tetapi variasinya berbeda. Ilustrasi berikut dapat menunjukkan kondisi tersebut Departemen Produksi PT STAR’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997 adalah 6 7 8 7 7Departemen Produksi PT FRESH’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997adalah 3 5 7 9 11Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Bila diperoleh nilai ukuran variasi yang kecil berarti tingkat keragaman data rendah, nilai-nilai observasi banyak terkonsentrasi disekitar nilai pusat. Sebaliknya bila nilai ukuran variasi yang diperoleh besar maka tingkat keragaman data besar, karena nilai-nilai observasi yang diperoleh saling berjauhan. Ukuran variasi dibedakan menjadi ukuran variasi absolut dan ukuran variasi ukuran variasi antara lain range, simpangan absolut rata-rata, variance dan standar deviasi, dan koefisien variasi, Ukuran variasi absolut digunakan untuk membandingkan suatu ukuran variasi dengan ukuran variasi lain dalam populasi yang sama.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang variasi relatif pada umumnya digunakan untuk membandingkan beberapa ukuran variasi dari beberapa populasi dengan unit pengukuran yang berbeda.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang berbeda. A. Range Rentang atau JangkauanRange adalah selisih antara nilai maksimum dengan nilai minimum dalam suatu gugus data. Sesuai dengan rumusnya, range dicari dengan melibatkan dua nilai saja, yaitu nilai terbesar dan nilai terkecil. Sebagai contoh diketahui nilai minimumnya $ dan maksimumnya $ Maka rentang range adalah $ - $ = $ B. Simpangan Absolut Rata-Rata Mean Absolut Deviation = MADSimpangan absolut rata-rata adalah jumlah mutlak penyimpangan setiap nilai pengamatan nilai rata-rata, dibagi banyaknya pengamatan. Simpangan absolut rata-rata mencerminkan rata-rata selisih mutlak nilai data terhadap nilai rata-rata. Untuk data yang tidak berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasiNXXMADNii1iXXN Untuk data yang berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasi = Frekuensi kelas ke-i i=1,2,3,...,kiXXNNXXfMADNiii1if C. Ragam Variance dan Standar DeviationRagam variance adalah jumlah kuadrat dari selisih nilai observasi dengan rata-rata hitung dibagi banyaknya observasi. Sedangkan standar deviasi adalah akar dari ragam tersebut. Ragam populasi yang tidak berkelompok dapat dihitung dengan formula  NNXXNXNiNiiiNii1212122 Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi. Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi.  111212122nnXXnXXSniniiinii Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan NNXfXfNiNiiiii12122..1..12122nnXfXfSniniiiii D. Koefisien Variasi Koefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. D. Koefisien VariasiKoefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. Koefisien variasi diperoleh dengan rumus untuk populasi untuk sampel%100.KV%  E. Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai ekstrem. Rumus kuartil untuk data berkelompok adalah Dimana Qk = Kuartil ke kB1 = Batas bawah nyata kelas yang mengandung Qk cfb = Frekuensi komulatif di bawah kelas yang berisi QkfQ = Frekuensi kelas yang mengandung Qki = Interval Kelask = 1, 2, 3N = Banyaknya F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah  Dimana Pk = Persentil ke kB1 = Batas bawah nyata kelas yang mengandung persentil ke-kcfb = Frekuensi komulatif di bawah kelas yang berisi Pk i = Interval Kelasfp = Frekuensi kelas yang mengandung Pkk = 1, 2, 3,...,99N = Banyaknya observasi Terima Kasih Atas Perhatiannya ResearchGate has not been able to resolve any citations for this has not been able to resolve any references for this publication. Related PapersStatistika adalah suatu ilmu yang mempelajari cara pengumpulan, pengolahan, penyajian dan analisis data serta cara pengambilan kesimpulan secara umum berdasarkan hasil penelitian yang tidak menyeluruh. Di sini, saya akan menyampaikan apa saja yang telah saya pelajari di Perguruan Tinggi Bina Insani. Dimulai dari yang perhitungan dalam statistika yang paling dasar. - evidrjtnKebutuhan air bersih bagi penduduk Surabaya merupakan kebutuhan vital yang tidak bisa disepelekan baik secara kuantitas maupun kualitas. Dalam upaya mengontrol dan memantau kualitas air di perairan Kota Surabaya, khususnya daerah sekitar Kali Surabaya, perlu adanya sistem pengelolaan dan pemantauan kualitas air pada Kali Surabaya. Peramalan terhadap data time series salah satu parameter kualitas air, yaitu BOD, menggunakan jaringan syaraf tiruan dapat digunakan sebagai model untuk menganalisis kecenderungan sistem perairan Kali Surabaya. Model jaringan syaraf yang dapat digunakan dalam peramalan data time series adalah model yang memiliki sifat supervised learning diantaranya adalah Jaringan Syaraf Radial Basis Function. Dengan mempertimbangkan kemungkinan terjadinya kesalahan paralaks dalam pengukuran serta terbatasnya data dan karakteristik data yang berbeda, aplikasi teori fuzzy digunakan sebagai unsupervised learning dalam model. Model yang terbentuk adalah model jaringan syaraf Fuzzy Radial Basis Function yang bersifat unsupervised-supervised learning dan terbukti dapat mengembangkan kualitas hasil peramalan nilai BOD pada Kali Surabaya. Tingkat keberhasilan pengembangan kualitas hasil peramalan tersebut terlihat dari nilai error yang kecil dengan mengunakan model jaringan syaraf Fuzzy Radial Basis Function. Hasil peramalan nilai BOD pada Kali Surabaya juga dapat digunakan sebagai acuan dalam upaya pengelolaan dan pemantauan kualitas air Kali Prestasi Akademik IPK sampai saat ini masih menjadi salah satu tolak ukur mutu lulusan yang dihasilkan oleh suatu Perguruan Tinggi. Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi IPK mahasiswa jika dilihat dari kualitas input mahasiswa baru yang ada di Jurusan Pendidikan Matematika IAIN STS Jambi. Beberapa parameter yang diasumsikan akan mempengaruhi kualitas input mahasiswa adalah jenis kelamin, asal sekolah, status sekolah, dan jalur masuk. Data diperoleh dari dokumentasi Jurusan Pendidikan Matematika. Sampel dalam penelitian ini adalah 131 orang mahasiswa angkatan 2012. Peubah bebas yang digunakan dalam penelitian ini terdiri dari peubah kuantitatif dan kualitatif. Peubah kualitatif diubah menjadi kuantitatif menggunakan peubah boneka dummy dan selanjutnya dianalisis dengan regresi dummy. Hasilnya, diperoleh hanya satu factor yang signifikan mempengaruhi IPK mahasiswa yaitu jalur masuk. Dilihat dari perolehan IPK mahasiswa berdasarkan jalur masuk terlihat bahwa nilai IPK tertinggi diperoleh IPK mahasiswa dari jalur PMBK dan nilai IPK terendah berasal dari mahasiswa dari jalur regular. Kata Kunci Indeks Prestasi Akademik, Regresi Dummy MatematikaSTATISTIKA Kelas 12 SMAStatistika WajibRagamRagamStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0148Diketahui data 2,6,7,1,4. Varians data tersebut adalah .... 0314Hasil ulangan matematika sekelompok siswa disajikan pada ...0148Ragam dari data 30, 40, 60, 70, 50 adalah ...0243Tentukan simpangan rata-rata dan simpangan baku data beri...Teks videojika diketahui soal seperti ini maka penyelesaiannya adalah terlebih dahulu kita harus memahami rumus dari variasi yaitu 1 N dari Sigma dari X dikurang rata-rata kuadrat nilainya dikodekan maka nilai rumus rata-rata adalah 1 per n dikali Sigma X maka kita dapat mencari nilai rata-ratanya terlebih dahulu yaitu 15 karena jumlah sukunya 50 + 8 + 6 + 14 + 12 Maka hasilnya menjadi 1 per 5 dikali dengan 50 = 10 maka rata-ratanya adalah 10 lalu kita anterin variansinya1 per 5 karena juga suhunya 5 dan X dengan 10 dikurang 10 kuadrat ditambah 8 dikurang 10 ditambah 6 dikurang 10 kuadrat ditambah 14 dikurang 10 kuadrat ditambah 12 dikurang 10 kuadrat maka hasilnya menjadi 1 per 5 dikali dengan 0 + 2 kuadrat 4 + 16 + 16 + 4 Maka hasilnya menjadi 40 dengan 5 menjadi 8 maka jawabannya adalah yang sekian sampai jumpa di selanjutnya

koefisien variasi dari data 6 10 6 10 adalah